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We show that the dynamic magnetization at the edges of a thin magnetic element with a finite lateral size can
be described by new effective boundary conditions that take into account inhomogeneous demagnetizing fields
near the element edges. These fields play a dominant role in the effective pinning of the dynamic magnetization
at the boundaries of mesoscopic- and nanosized magnetic elements. The derived effective boundary conditions
generalize well-known Rado-Weertman boundary conditions and are reduced to them in the limiting case of a
very thin magnetic element.
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Rapid progress in magnetic data recording and sensor
technologies creates a motivation to work with submicron
magnetic elements.1 The physics of mesoscopic and nano-
magnetic elements is qualitatively different from that of bulk
magnetic systems. The confinement of spin wave modes and
other finite-size effects dominate the properties of magnetic
nanoparticles2,3 and create opportunities for novel applica-
tions in spintronic devices.4,5 The use of small magnetic el-
ements in data recording4,6 or for current-induced microwave
generation and switching5,6 depends on our understanding of
their fundamental dynamical properties.

The central problem is to understand the dipole-dipole
interaction and its interplay with other factors, including the
exchange interaction and surface anisotropy. When the rel-
evant interactions are properly taken into account, it is pos-
sible to calculate the excitation spectra of the magnetic ele-
ments in terms of spin wave eigenmodes. These spectra
provide information on the characteristic times of magneti-
zation reversal as studied experimentally,7,8 and provide
much needed general insights. The magnetization �M� dy-
namics of a magnetic element can be described using the
Landau-Lifshitz equation of motion. This approach contains
contributions from the nonuniform exchange interaction, as
well as from the long-range dipole-dipole interaction, which
is also nonuniform for nonellipsoidal magnetic elements. The
eigenfrequencies and eigenmode distributions of spin-wave
excitations in such elements depend strongly on the bound-
ary conditions at the element surfaces. Knowledge of these
boundary conditions is important to calculate the spectra of
magnetic linear excitations �spin waves� in the element, both
in the case of a uniform ground state, when the element is
magnetized by the external magnetic field to saturation, and
in the case when the ground state is strongly nonuniform
�e.g., a magnetic vortex�.

It is known that the usual electrodynamic boundary con-
ditions of the Maxwell classical theory leave the amplitude
of the dynamic magnetization at the boundary undefined.
Maxwell’s theory requires the continuity of the normal com-
ponents of the magnetic induction and the tangential compo-
nents of the magnetic field. The problem is that the magnetic
moments near the boundaries experience the influence of lo-
cal magnetic fields that are different from the fields in the

bulk. Kittel9 introduced boundary conditions of total “pin-
ning” �M=0 at the boundary� based on Neel’s concept of
surface anisotropy10 to explain experimental data on spin-
wave resonances in magnetic films. General “exchange”
boundary conditions for the dynamic magnetization were
then formulated by Rado and Weertman �RW�.11 In addition
to Kittel’s term, RW took into account the influence of the
exchange interaction, and obtained what is known as the
Rado-Weertman boundary conditions:

Le
2M �

�M

�n
+ Ts = 0, �1�

where Le= �2A /Ms
2�1/2 is the characteristic exchange length

of a material �defining the length scale at which the exchange
interaction becomes important�, A is the exchange stiffness,
Ms is the saturation magnetization, � /�n is the partial deriva-
tive along a unit vector n �an inward normal direction to the
particle surface�, and Ts is the sum of all the surface torques
that arise from forces other than the exchange interaction.
The term Ts usually contains contributions from the Neel
surface anisotropy Ta, but contributions from other local
fields are also possible. The boundary conditions �1� gener-
alize Kittel’s, and permit both a totally “pinned” magnetiza-
tion �M=0� when the torque Ts is large, and also a pinning
of an arbitrary magnitude up to the totally “free” or “un-
pinned” magnetization ��M /�n=0� at the boundaries when
Ts is small and the exchange interaction is dominant.

In the present article we demonstrate that to derive accu-
rate boundary conditions for the dynamic magnetization at
the lateral edges of a thin mesoscopic or nanosized magnetic
element, it is not sufficient to take into account only the Neel
surface anisotropy in the expression for Ts, as it was done in
the majority of previously published papers on this subject
�see, e.g., Ref. 12 and references therein�. It is also necessary
to include a contribution from the strongly nonuniform inter-
nal dipolar field existing near the element edges. Then, the
surface torque near the lateral edge of the element in Eq. �1�
becomes Ts=Ta+Tm, where the second dipolar �magneto-
static� term can be dominant in a certain range of the element
thickness L. To take into account the dipolar field, it is con-
venient to rewrite Eq. �1� in the form:
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M � �Le
2�M

�n
− �MEa + HmL� = 0, �2�

where Ea�M� is the energy density of the surface anisotropy,
and Hm is the dipolar field near the element edge, and L is
the element thickness.

Below we use Eq. �2� to derive the explicit form of
boundary conditions at the lateral edges of thin magnetic
elements �L�w ,R�, where w and R are the in-plane sizes of
elements having either a rectangular or cylindrical shape. We
also assume that at the face surfaces of the magnetic element
at a distance from the edge of the order of the element thick-
ness L the influence of the inhomogeneous dipolar field is
negligible, and the RW boundary conditions11 determined
only by the surface anisotropy and exchange interaction can
be applied. For simplicity, we consider only the case of a
uniaxial surface anisotropy with anisotropy constant Ks and
the anisotropy axis direction given by a unit vector na. The
effective field of surface anisotropy is then given by Ha
=−�MEa= �2Ks /Ms

2��M ·na�na. Our main task is to evaluate
the dipolar field Hm that exists near the lateral edges of a thin
magnetic element.

In our calculation we represent the magnetization in Eq.
�2� in the form M=Msi0+m, where i0 is a unit vector in the
direction of the equilibrium magnetization Ms. We assume
that the dynamic magnetization m is perpendicular to Ms or
m · i0=0, and that its magnitude m is much smaller than the
Ms �m�Ms�, which is correct for any linear magnetic exci-
tations. In a thin in-plane magnetized element made of a soft
magnetic material, vector i0 lies in the plane of the element,
and is directed along its lateral edge to minimize the magne-
tostatic energy of the static magnetic configuration. Other
directions of i0 are also possible, leading to some mathemati-
cal complications, which are not principal and will be con-
sidered elsewhere. The element could have an arbitrary
shape. The only critical requirement is that it is thin, i.e., that
the element thickness L is much smaller than the element
lateral size. Typical shapes could be a thin rectangular prism
or a thin circular or elliptical cylinder. Submicron plane mag-
netic dots prepared by lithographic patterning of thin mag-
netic films made of Fe, Co, or NiFe are good examples of
such thin magnetic elements.8,13,14 Dipolar boundary condi-
tions for particular case of thin magnetic rectangular stripes
were explicitly calculated in Ref. 15 and successfully applied
for a quantitative interpretation of Brillouin light scattering
experiments.

In practical calculations of spin wave spectra in thin mag-
netic elements, it is usually assumed that the dynamic mag-
netization at the edges is totally pinned, as is described by
Kittel’s boundary conditions �see, e.g., Ref. 16�. This ap-
proach, however, is rather arbitrary, and is not based on an
exact knowledge of the behavior of the dynamic magnetiza-
tion near the boundary. To derive boundary conditions for a
thin magnetic element we evaluate the inhomogeneous dipo-
lar field Hm directly from the Maxwell’s equations. For
mathematical simplicity we consider a case of an axially
magnetized stripe with a rectangular cross section �see Fig.
1�, which has only one finite lateral caliper �width w�. The
general solution of Maxwell’s equations for the dipolar field

Hm can be written as a sum of two fields Hm�r�=HS�r�
+HV�r�, resulting from surface �S� and volume �V� magnetic
charges:17

Hm�r� = − �r� dS
mn�r��
�r − r��

+ �r� dV
�r� · m�r��

�r − r��
. �3�

We evaluate the dipolar field �3� for an infinitely long
magnetic stripe having thickness L, uniformly magnetized
along the y axis, while the z axis is directed along the stripe
thickness �see Fig. 1�. The boundary conditions for magneti-
zation in a stripe can be written as projections of the vector
torque equation �2� on the coordinate axes. Since the stripe is
infinite in the y direction, the distribution of the dynamic
magnetization m�r�=m�x ,z� within the stripe and the de-
magnetizing field Hm�r�=Hm�x ,z� are independent of the co-
ordinate y, and y components of both these vectors are van-
ishing. We also assume a homogeneous distribution of the
dynamic magnetization along the coordinate z �making
m�r�=m�x��, since we consider thin magnetic elements with
the thickness of the order of Le. For the case of a thin mag-
netic stripe with aspect ratio p=L /w�1 and the situation
when m�r�=m�x�, the torque �2� and the dipolar field �3�
have only x and z components, and can be simplified. At first,
we consider only the x component Hmx�r� of the dipolar field
�3�. Since we are interested in the boundary conditions at the
lateral edges of the stripe �the planes x= ±w /2 in Fig. 1�, we
can also average the x component of the dipolar field �3� over
the coordinate z, making it a function of the coordinate x
only: h�x�= 	Hmx�x ,z�
z. We separate the contributions from
the surface and volume magnetic charges, and write h�x�
=hS�x�+hV�x�. Note, that at the lateral surface x=w /2, the
surface charges are given by mx�w /2� and the volume
charges are defined by �mx�x� /�x.

An evaluation of the integrand in the first �surface� inte-
gral in �3� at the face surfaces �z=0,L� of the stripe shows
that the face surface magnetic charges �proportional to mz�
do not contribute to the x component of the dipolar field
h�x�.15 An evaluation of the same integrand at the lateral �x
= ±w /2� surfaces of the stripe yields the dipolar field hS�x�
= �2���x−w /2�+F��w /2−x� /L��mx�w /2�, where ��x�
=sign�x� and F���=2� ln�1+1/�2�+4 tan−1�. A direct cal-
culation shows that near the lateral boundary x=w /2 of the
stripe, the contribution of the second term in the expression
for hS�x� is small �of the order of the stripe aspect ratio p�.

FIG. 1. �Color online� Coordinates system for a thin magnetic
stripe.
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Only the first term of hS�x� gives a contribution �of the order
of 2�� to the boundary conditions in the main approxima-
tion. In the calculation of the dipolar field hS�x� near the right
xw /2 lateral surface of the stripe, we neglect the contribu-
tion to it from the surface charges at the left lateral surface
x=−w /2, and vice versa.

To evaluate the second �volume� integral in �3� near the
lateral boundary of the stripe, we expand the variable mag-
netization m�x� in a Taylor series. Only the x component of
the variable magnetization is important in this case, and that
the main contribution to the dipolar field hV�x� comes from
term containing the first spatial derivative of mx. This yields
the “volume” dipolar field in the form hV�x�
=wI�x , p��mx�x� /�x, where near the boundary x=w /2 the
function I�x , p� is evaluated as I�w /2 , p�= p−2p ln p.15 All
other terms in the field hV�x�, containing higher-order deriva-
tives �smx�x� /�xs �s�1�, in the limit of a thin stripe p�1 are
substantially smaller than the first term.15 A similar situation
exists at the other lateral boundary x=−w /2. Substituting the
calculated expressions of h�x�=hS�x�+hV�x� for Hm in Eq.
�2�, we get the following relations between the x component
of m and its first derivative at the stripe boundaries x=w /2
−0 and x=−w /2+0:

±
�mx�	�

�	
+ d�p,L��mx�	��	=±1/2 = 0. �4�

These relations that can be interpreted as effective bound-
ary conditions, where d�p ,L� is the effective “pinning” pa-
rameter and 	=x /w is the dimensionless coordinate perpen-
dicular to the lateral boundary of the stripe. The direction of
the normal n to the lateral surface of the stripe is defined as
n=−xex, where ex is the unit vector along the x axis. Similar
boundary conditions can be obtained for the z component of
the dynamic magnetization.

As an alternative example of a thin magnetic element we
also considered a circular cylinder having thickness L and
radius R �L�R�. We used an approach similar to that for a
long rectangular stripe and obtained a result for the pinning
parameter analogous to the result obtained for the stripe. A
general expression for the pinning parameter in �4�, which is
correct in both rectangular and cylindrical geometry, can be
written in the following form:

d�p,L� =

2��1 − � Ks

�Ms
2L
��

p�a + b ln�1/p� + �Le

L
�2� , �5�

where the values of the coefficients a and b are determined
by the geometry of the element �a ,b�1�, and the parameter
p is the thickness to the lateral size aspect ratio of a thin
magnetic element. In particular, p=L /w for a stripe of the
width w and p=L /R for a circular cylinder of the radius R.
Calculations yield the following values for the coefficients
a and b: a=1, b=2 for a rectangular stripe, and a=2�6 ln 2
−1�, b=4 for a circular cylinder.

The above-derived boundary conditions �4� with the ef-
fective pinning parameter �5� generalize the well-known RW

boundary conditions11 for the case of a thin magnetic ele-
ment having a finite lateral size, and represent the main result
of this paper. The sign of the pinning parameter in our defi-
nition �5� is opposite to the sign in the pinning parameter
defined in Ref. 11, so that d�p ,L��0 in �5� corresponds to
the “easy plane” type of effective surface anisotropy. The
calculated pinning parameter �5� corresponds to a strong pin-
ning if w ,R
L�Le �dipolar dominated regime�, and to a
weak pinning if �Lw�1/2�Le or �LR�1/2�Le �exchange-
dominated regime�. We believe that although our calcula-
tions were done for rectangular and circular geometries,
similar effective boundary conditions could be obtained in
other geometries, in particular for a thin magnetic dot having
the shape of an elliptical cylinder.

The pinning parameter d�p ,L� calculated from Eq. �5� is
shown in Fig. 2 as a function of the element thickness. The
exchange interaction dominates for small L, and the pinning
parameter decreases as the element thickness L decreases. In
the case of a nonzero surface anisotropy, deviations of the
pinning parameter �5� from the purely dipolar pinning15 oc-
cur for the element thickness L�10 nm and are stronger for
an “easy axis” type of surface anisotropy �Ks�0� �see the
dot-dashed line in Fig. 2�. For this type of surface anisotropy,
the pinning parameter �5� also strongly differs from the RW
pinning due to the competing contributions from surface an-
isotropy and dipolar interaction. For Ks=0 the pinning �5�
depends on the ratio L /Le and is strong if L /Le�0.1. For
larger values of L, but still in the limit p�1, the dipolar
contribution to pinning becomes dominant independently of
the sign and value of the surface anisotropy. The absolute
value of �Ks�=0.20 erg/cm2 used in Fig. 2 �Ms=800 G� cor-
responds to a relatively strong surface anisotropy. We note
that for the majority of soft magnetic materials the contribu-
tion from the surface anisotropy to the effective pinning pa-

FIG. 2. Pinning parameter for a thin magnetic stripe vs stripe
thickness L �the stripe width is w=1000 nm�. The dashed line cor-
responds to pure dipolar pinning �Ks=0, Le=0� of Ref. 15. The
solid line corresponds to the easy-plane surface anisotropy
�Ks /�Ms

2=−1 nm�, while the dot-dashed line corresponds to the
easy-axis type of surface anisotropy �Ks /�Ms

2=1 nm� �see Eq. �5��.
The dotted line corresponds to Ks=0, the horizontal lines corre-
spond to Rado-Weertman pinning with Ks /�Ms

2=−1 nm �upper�,
and Ks /�Ms

2=1 nm �lower�. Le=20 nm.
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rameter �5� can be neglected because usually Ks��LMs
2.

Figure 3 demonstrates a crossing regime from the case of a
strong dipolar pinning to the case of a weaker exchange-
dominated pinning when the element thickness is decreased
and the element aspect ratio p is kept constant �proportional
scaling of the element’s sizes�. The pinning vanishes at L
→0, which reflects the increasing role of the short-range
exchange interaction. Note that the purely dipolar value of
the pinning parameter d�p�=2�p−1�1+2 ln�1/ p��−1 derived
in Ref. 15 and RW value of the pinning, dRW�p ,L�
=−2KsL / pMs

2Le
2,11 serve as two asymptotes for the pinning

parameter given by Eq. �5�. The first limiting value is
achieved for L�Le, while for the second limiting value we
get L�Le. It is also clear that the general pinning parameter
�5�, in the limit L→0, is equivalent to the RW pinning, in-
dependently of the sign of the surface anisotropy.

We stress, that, although the boundary conditions �4� look
formally analogous to the exchange boundary conditions in a
perpendicularly magnetized film, the effective pinning is ac-
tually a result of the interplay of the exchange, dipolar, and
surface anisotropy terms. In contrast to the usual “exchange”
pinning, the pinning parameter �5� is not fully determined by
the surface anisotropy of the magnetic material. The physical
role of this generalized pinning is to minimize the total sur-
face energy �the sum of exchange, anisotropy, and magneto-
static energies�. The magnetostatic part results from the in-
duced surface charges = �m ·n�S at the edges of finite-size
nonellipsoidal magnetic element and volume charges near its
edges. For p→0, the pinning parameter d�p ,L� of Eq. �5� is
rather large, and the boundary conditions �4� are close to the
Kittel’s boundary conditions9 that were traditionally used at
the lateral edges of thin magnetic elements.16 A more de-
tailed analysis shows that in the boundary conditions �4� the
term proportional to the dynamic magnetization m comes
from the surface magnetic charges and surface anisotropy.
The term proportional to the derivative �m /�x comes from

the volume magnetic charges �and exchange�, if we retain
only the main terms in the small parameter p. The strong
pinning in the dipole-dominated regime corresponds to a
large ratio of surface/volume charges, and for thin magnetic
elements �p�1� represents a “finite-size” effect.

The derived boundary conditions �4� are especially impor-
tant within the thickness range 2–10 nm �see Figs. 2 and 3�,
where the pinning described by Eq. �5� differs significantly
from the “dipolar” value given by horizontal line in Fig. 3
�see also Ref. 15�. Our predictions can be tested in any dy-
namical experiments using magnetic elements with the as-
pect ratio p�1 and L�10 nm. In particular, for the condi-
tions of the experiment,7 where the “free” layer of a
nanopillar driven by spin-polarized current has a shape of an
elliptical cylinder with the sizes 3�130�70 nm and is rela-
tively thin �L�Le�, our equation �5� predicts negligible pin-
ning at the lateral edge of the free layer, thus excluding the
influence of the exchange interaction on the frequency of the
lowest spin wave mode excited in the nanopillar. This con-
clusion is supported by the results of the experiment,7 where
the dependence of the current-induced microwave frequency
on the bias magnetic field for the small precession angle
regime is well described by the purely dipolar �nonexchange�
expression for the quasihomogeneous precession mode of a
nanopillar. At the same time, we would like to note that in
the relatively thick magnetic elements of the thickness of L
=30–70 nm �L�Le� with the in-plane size of about w, R
=500–1000 nm Eq. �5� predicts strong dipolar pinning for
the lowest spin wave modes, and the spin wave frequencies
calculated using the effective pinning parameter given by Eq.
�5� are in good quantitative agreement with experiments per-
formed in both circular14,18 and rectangular15 magnetic ele-
ments.

In summary, we derived general boundary conditions �4�
with the effective pinning parameter �5� for the dynamic
magnetization of thin magnetic nonellipsoidal elements.
These conditions take into account exchange interaction, sur-
face anisotropy, and a nonuniform dipolar field near the ele-
ment lateral edges. The contribution of the dipolar field to
the effective pinning parameter is dominant for the element
thickness Le�L�w, R, while for L→0 �Le�L�0� the ex-
change and surface anisotropy contributions become gradu-
ally more important, and our boundary conditions are re-
duced to the well-known Rado-Weertman form.11 The
derived boundary conditions �4� and �5� are important in the
interpretation of spin wave spectra of nanosized magnetic
elements, and are well supported by several independent ex-
periments �see, e.g., Refs. 7, 14, and 15�.
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FIG. 3. Pinning parameter given by Eq. �5� for thin magnetic
stripe vs element thickness L keeping the aspect ratio p=0.01 as
constant. The dotted line corresponds to pure dipolar pinning �Ks

=0, Le=0�. The solid line and the dashed line are for a surface
anisotropy Ks /�Ms

2=−2 nm and Ks=0, respectively. The dashed-
dotted line corresponds to RW pinning with the same parameters.
Le=20 nm.
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